

Inhalt

1.	Allgemeine Informationen 2	
2.	Chemische Zusammensetzung 2	
3.	Physikalische Eigenschaften2	
3.1	Dichte 2	
3.2	Solidus- und Liquidustemperatur 2	
3.3	Längenausdehnungskoeffizient 2	
3.4	Spezifische Wärmekapazität 2	
3.5	Wärmeleitfähigkeit2	
3.6	Spezifische elektrische Leitfähigkeit 3	
3.7	Spezifischer elektrischer Widerstand 3	
3.8	Temperaturkoeffizient des elektr. Widerstands 3	
3.9	Elastizitätsmodul 3	
3.10	Spezifische magnetische Suszeptibilität 3	
3.11	Kristallstruktur / Gefüge	
4.	Mechanische Eigenschaften 4	
4.1	Festigkeitswerte bei Raumtemperatur 4	
4.2	Tieftemperaturverhalten6	
4.3	Hochtemperaturverhalten6	
4.4	Dauerschwingfestigkeit 7	
5.	Normen 7	
5.1	Bänder und Bleche7	
5.2	Stangen 7	
5.3	Drähte	
5.4	Schmiedestücke und Schmiedevormaterial 7	

6.	Werkstoffbezeichnungen	8
7.	Bearbeitbarkeit	8
7.1	Umformen und Glühen	
7.2	Spanbarkeit	8
7.3	Verbindungstechniken	8
7.4	Oberflächenbehandlung	9
8.	Korrosionsbeständigkeit	9
9.	Anwendungen	9
10.	Liefernachweis	9
11.	Literatur	9
12.	Index	10

Stand 2005

Hinweis:

Durch Klicken auf die Überschriften können Sie direkt zu den entsprechenden Inhalten springen.

1. Allgemeine Informationen

Werkstoff-Bezeichnung:

CuZn39Pb2

Werkstoff-Nr.:

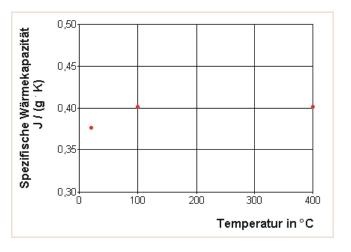
CW612N (ehem.: 2.0380)

CuZn39Pb2 ist die meistverwendete Legierung zur spanabhebenden Bearbeitung; sie ist außerdem sehr gut zum Warmumformen geeignet und hat eine sehr gute Schmiedbarkeit.

Der Grad der Kaltumformung ist dagegen auf niedrige Werte begrenzt.

2. Chemische Zusammensetzung - nach DIN EN -

Legierungsbestandteile			
Massenanteil in %			
Cu	Zn	Pb	
59,0 bis 60,0	Rest	1,6 bis 2,5	


Zulässige Beimengungen bis				
Massenanteil in %				
Ni	Fe	Sn	Al	Sonstige zusammen
0,3	0,3	0,2	0,05	0,2

3.3 Längenausdehnungskoeffizient

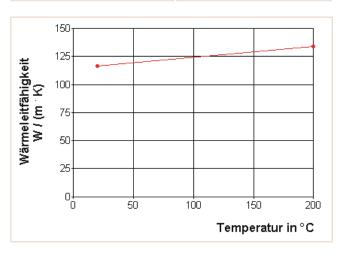
Temperatur	Längenausdehnungs- koeffizient
°C	10 ⁻⁶ ⋅K ⁻¹
von 20 bis 100	20,0
von 20 bis 300	21,0

3.4 Spezifische Wärmekapazität

Temperatur	Spezifische Wärmekapazität
°C	J/(g⋅K)
20	0,377
von 20 bis 400	0,402

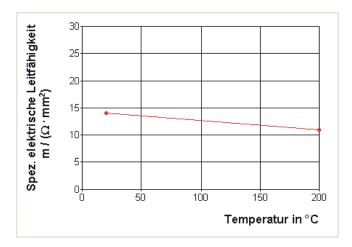
3. Physikalische Eigenschaften

3.1 Dichte


Temperatur	Dichte
°C	g/cm³
20	8,45

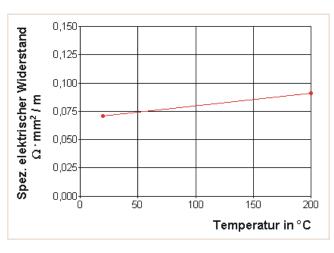
3.2 Solidus- und Liquidustemperatur

Solidustemperatur	Liquidustemperatur
°C	°C
880	895


3.5 Wärmeleitfähigkeit

Temperatur	Wärmeleitfähigkeit
°C	W/(m⋅K)
20	117
200	134

3.6 Spezifische elektrische Leitfähigkeit


Temperatur	Spez. elektr. Leitfähigkeit
°C	MS/m
20	14
200	11

Anmerkung: 1 MS/m entspricht 1 m/($\Omega \cdot mm^2$).

3.7 Spezifischer elektrischer Widerstand

Temperatur	Spez. elektr. Widerstand
°C	(Ω·mm²)/m
20	0,071
200	0,091

3.8 Temperaturkoeffizient des elektr. Widerstands

Temperatur	Temperaturkoeffizient des elektr. Widerstands
°C	K ⁻¹
20	0,0016

Gültig von 0 bis 100 °C.

3.9 Elastizitätsmodul

Temperatur	Elastizitätsmodul
°C	kN/mm²
20	102

Anmerkung: 1 kN/mm² entspricht 1 GPa.

3.10 Spezifische magnetische Suszeptibilität - bei 20 °C -

CuZn39Pb2 ist diamagnetisch, solange kein Eisen in freier Form vorhanden ist. Die Suszeptibilität X liegt bei $-0,173 \cdot 10^{-6}$ cm³/g, sie steigt bei 0,034 % Fe auf $0.88 \cdot 10^{-6} \text{ cm}^3/\text{g}.$

3.11 Kristallstruktur / Gefüge

CuZn39Pb2 weist ein heterogenes Gefüge aus $(\alpha+\beta)$ -Mischkristallen auf, wobei die α -Phase in einem kubischflächenzentrierten und die β -Phase in einem kubischraumzentrierten Gitter kristallisieren.

Blei ist in dieser Legierung unlöslich und scheidet sich in fein verteilter Form ab. Es wirkt kornfeinend und dient als Spanbrecher.

4. Mechanische Eigenschaften

4.1 Festigkeitswerte bei Raumtemperatur

4.1.1 Bänder und Bleche - nach DIN EN 1652 -

Zustand	Die	cke	Zugfes	Zugfestigkeit		Bruchdehnung		Härte	
	(Nenr	(Nennmaß)				für Dicken			
						bis 2,5 mm	über 2,5 mm		
	R _m		R _m	R _{p0,2}	A _{50mm}	Α	A HV		
	m	ım	N/r	nm²	N/mm²	%	%		
	von	bis	min.	max.		min.	min.	min.	max.
R360	0,3	5	360	440	(max. 270)	30	40	-	-
H090	0,3	5	-	-	-	-	-	90	120
R420	0,3	5	420	500	(min. 270)	12	20	-	-
H120	0,3	5	-	-	-	-	-	120	150
R490	0,3	5	490	570	(min. 420)	-	9	-	-
H150	0,3	5	-	-	-	-	-	150	180
R560	0,3	2	560	-	(min. 510)	-	-	-	-
H175	0,3	2	-	-	-	-	-	175	-

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.2 Rohre

Rohre aus CuZn39Pb2 sind in DIN EN nicht genormt. Festigkeitseigenschaften sind mit dem Hersteller zu vereinbaren.

4.1.3 Stangen - nach DIN EN 12164 -

Zustand		Querschnittsmaße				Zug- festigkeit	0,2 %- Dehngrenze	Br	uchdehnung	1)	Härte			
	Du	rchi	nesse	r	Sch	lüss	elwei	te	R _m	R _{p0,2}	A ₁₀₀	A _{11,3}	Α	HB / HV
		m	m			m	m		N/mm ²	N/mm²	%	%	%	
									min.	ungefähr	min.	min.	min.	ungefähr
М	von	2	bis	80	von	2	bis	60			wie ge	fertigt		
R380	von	6	bis	40	von	5	bis	35	380	(160)	-	16	20	(90)
R360	über	40	bis	80	über	35	bis	60	360	(150)	-	-	25	(90)
R410	von	2	bis	40	über	2	bis	35	410	(250)	10	12	15	(120)
R490	von	2	bis	6	von	2	bis	5	490	(370)	(4)	6	-	(140)
R490	über	6	bis	14	über	5	bis	10	490	(370)	-	6	8	(140)
R550	von	2	bis	6	von	2	bis	5	550	(420)	-	-	-	(150)

 $^{^{1\!} J}$ Die Proben müssen DIN EN 10002–1 entsprechen, außer dass eine Messlänge von 200 mm nicht zulässig ist. Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.4 Drähte - nach DIN EN 12166 -

Zustand	Durchmesser	nesser Zugfestigkeit		0,2 %- Dehngrenze	Br	uchdehnung	S ²⁾	Härte		Frühere Zustands-
	(Nennmaß)	R _n	n	R _{p0,2}	A ₁₀₀	A _{11,3}	Α	H	łV	bezeich- nung ¹⁾
	mm	N/m	m²	N/mm ²	%	%	%			nung -
		min.	max.	ungefähr	min.	min.	min.	min.	max.	
М	alle Maße					wie gefertigt				
R400	von 0,1 bis 1,5	400	-	(200)	-	-	-	-	-	
R400	über 1,5 bis 4,0	400	-	(200)	10	-	-	-	-	
H110	von 1,5 bis 4,0	-	-	-	-	-	-	110	140	viertel-
R390	über 4,0 bis 8,0	390	-	(180)	-	15	-	-	-	hart
R380	über 8,0 bis 20,0	380	-	(180)	-	-	20	-	-	
H100	über 4,0 bis 20,0	-	-	-	-	-	-	100	130	
R450	von 0,5 bis 1,5	450	-	(300)	-	-	-	-	-	
R440	über 1,5 bis 4,0	440	-	(260)	8	-	-	-	-	
H130	von 1,5 bis 4,0	-	-	-	-	-	-	130	160	halb-hart
R430	über 4,0 bis 8,0	430	-	(300)	-	10	-	-	-	iiaiv-iiait
R420	über 8,0 bis 20,0	420	-	(300)	-	-	15	-	-	
H120	über 4,0 bis 20,0	-	-	-	-	-	-	120	155	
R500	von 0,5 bis 1,5	500	-	(400)	-	-	-	_	-	
R500	über 1,5 bis 4,0	500	-	(400)	4	-	-	-	-	
H150	von 1,5 bis 4,0	-	-	-	-	-	-	150	180	hart
R490	über 4,0 bis 8,0	490	-	(400)	-	5	-	-	-	Hait
R480	über 8,0 bis 14,0	480	-	(400)	-	-	8	-	-	
H140	über 4,0 bis 14,0	-	-	-	-	-	-	140	170	
R570	von 1,5 bis 4,0	570	-	(520)	-	-	-	-	-	feder-
H165	von 1,5 bis 4,0	-	-	-	-	-	-	165	-	hart

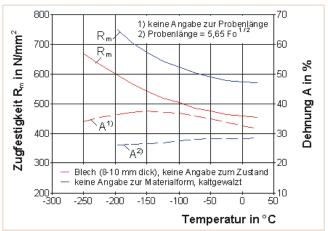
¹⁾ nur zur Information.

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

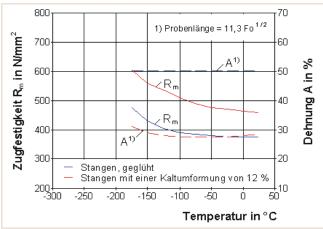
4.1.5 Strangpressprofile

Strangpressprofile aus CuZn39Pb2 sind in DIN EN 12167 genormt.

4.1.6 Schmiedestücke - nach DIN EN 12420 -

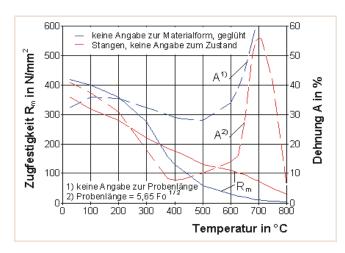

Zustand	Dicke in Sci	Hä	irte	Zug- festigkeit	0,2 %- Dehngrenze	Bruch- dehnung	
	Gesenk- und Freiform- Schmiedestücke	Freiform-Schmiedestücke	НВ	HV	R _m	R _{p0,2}	A
					N/mm ²	N/mm²	%
	bis 80 mm	über 80 mm	min.	min.	min.	min.	min.
М	X	Х	wie gefe	rtigt, ohne fes	tgelegte mech	nanische Eiger	ischaften
H075	-	X	75	80	(340)	(110)	(20)
H080	X	-	80	85	(360)	(120)	(20)

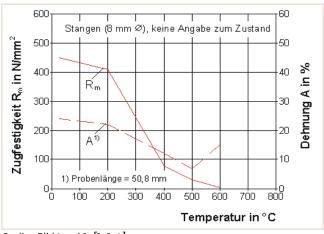
Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.


CuZn39Pb2

4.2 Tieftemperaturverhalten

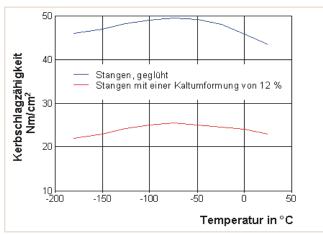
4.2.1 Festigkeitswerte

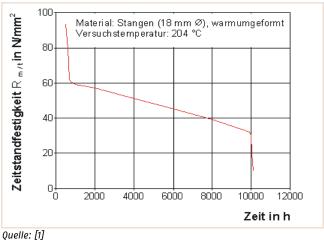

Quelle: [1]



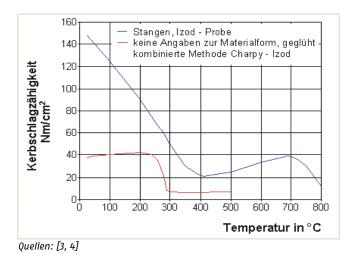
Quelle: [1]

4.3 Hochtemperaturverhalten


4.3.1 Warmfestigkeit

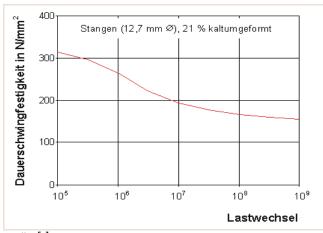

Quellen Bild 1 und 2: [2, 3, 4]

4.2.2 Kerbschlagzähigkeit - Tieftemperatur -



Quelle: [1]

4.3.2 Zeitstandwerte



4.3.3 Kerbschlagzähigkeit - Hochtemperatur -

4.4 Dauerschwingfestigkeit

4.4.1 Stangen

Quelle: [5]

5. Normen

5.1 Bänder und Bleche

DIN EN 1652 Kupfer und Kupferlegierungen -Platten, Bleche, Bänder, Streifen und Ronden zur allgemeinen Verwendung

5.2 Stangen

DIN EN 12164 Kupfer und Kupferlegierungen -

Stangen für die spanende Bearbeitung

DIN EN 12167 Kupfer und Kupferlegierungen -

Profile und Rechteckstangen zur allgemei-

nen Verwendung

DIN EN 12168 Kupfer und Kupferlegierungen -

Hohlstangen für die spanende Bearbeitung

5.3 Drähte

DIN EN 12166 Kupfer und Kupferlegierungen -

Drähte zur allgemeinen Verwendung

5.4 Schmiedestücke und Schmiedevormaterial

DIN EN 12165 Kupfer und Kupferlegierungen -

Vormaterial für Schmiedestücke

DIN EN 12420 Kupfer und Kupferlegierungen -

Schmiedestücke

6. Werkstoffbezeichnungen

Vergleich der Werkstoffbezeichnungen in verschiedenen Ländern (einschließlich ISO) *)

Land	Bezeichnung der Normung	Werkstoffbezeich- nung / -nummer
Europa	EN	CuZn39Pb2 CW612N
USA	ASTM (UNS)	C37700
Japan	JIS	C3771, C3561
Internationale Normung	ISO	CuZn38Pb2

Vormal	Vormalige nationale Bezeichnungen						
Deutschland	DIN	CuZn39Pb2 2.0380					
Frankreich	NF	CuZn39Pb2					
Großbritannien	BS	CZ 120					
Italien	UNI	P-CuZn39Pb2					
Schweden	SS	5168					
Schweiz	SNV	-					
Spanien	UNE	CuZn39Pb2 C-6435					

^{*)} Die Toleranzbereiche der Zusammensetzung der in außereuropäischen Ländern genormten Legierungen sind nicht in allen Fällen gleich mit der Festlegung nach DIN EN.

7. Bearbeitbarkeit

7.1 Umformen und Glühen

Umformen				
Kaltumformung	begrenzt			
Kaltumformgrad zwischen den Glühungen	max. 25 %			
Warmumformung Temperaturbereich	sehr gut 650 bis 800 °C			

Glühen					
Weichglühen, Temp-Bereich	450 bis 600 °C				
Entspannungsglühen, Temp-Bereich	200 bis 350 °C				

Das Gefüge von CuZn39Pb2 ist uneinheitlich. Es besteht aus α -Messing, β -Messing und Blei. β -Messing und insbesondere das Blei sind der Grund für die sehr gute Spanbarkeit. Vor allem der β-Messing-Anteil verleiht dieser Legierung eine gute Warmumformbarkeit. Aus dem gleichen Grund ist dagegen der Grad der Kaltumformbarkeit auf niedrige Werte begrenzt.

7.2 Spanbarkeit

Zerspanbarkeitsindex: 85

(CuZn39Pb3 = 100)

(Die angegebenen Zahlen sind keine festen Messwerte, sondern stellen relative Einstufungen dar. Angaben anderer Quellen können daher geringfügig nach oben oder unten abweichen.)

Bei der groben Unterteilung der Kupferwerkstoffe hinsichtlich ihrer Spanbarkeit in drei Hauptgruppen wird CuZn39Pb2 der Gruppe I (sehr gut spanbar) zugeordnet. Für eine weitere Abstufung innerhalb dieser Gruppe ist der Festigkeitszustand maßgebend, so hat CuZn39Pb2 im Zustand R 550 eine relativ bessere Spanbarkeit als im Zustand R 380. Die Spanform ist sehr günstig, es treten kurzbrechende Nadelspäne auf.

Siehe dazu auch [6].

7.3 Verbindungstechniken

Schweißen				
Gasschweißen	weniger empfehlenswert			
Lichtbogenhandschweißen	weniger empfehlenswert			
WIG-Schweißen	weniger empfehlenswert			
MIG-Schweißen	weniger empfehlenswert			
Widerstandsschweißen	mittel			

Löten			
Weichlöten	sehr gut		
Hartlöten	mittel		

Kleben			
	geeignet		

Wenn das Schweißen nicht fachmännisch durchgeführt wird, kann eine hohe Zinkausdampfung wegen der niedrigen Verdampfungstemperatur (906 °C) auftreten. Das Schweißen von CuZn39Pb2 bereitet aufgrund des Bleigehaltes zusätzliche Schwierigkeiten, wegen der auftretenden Schrumpfspannungen wird die Schmelzschweißeignung ungünstig beeinflusst.

7.4 Oberflächenbehandlung

Polieren	
mechanisch	sehr gut
elektrolytisch / chemisch	weniger empfehlenswert
Galvanisierbarkeit	
	sehr gut
Eignung für Tauchverzinnung	
	sehr gut

8. Korrosionsbeständigkeit

CuZn39Pb2 erreicht gegenüber Wasser, verschiedenen Salzlösungen, und organischen Flüssigkeiten nicht die hohe Beständigkeit eines homogenen α -Messings, da die zinkreiche β-Phase im heterogenen Gefüge bevorzugt angegriffen wird.

Außerdem kann unter bestimmten Bedingungen (Wässer mit hohem CI-Gehalt und niedriger Karbonathärte) eine Korrosion in Form der "Entzinkung" auftreten.

Ferner neigt dieser Werkstoff im kaltverformten Zustand unter äußeren und/oder inneren Zugspannungen bei gleichzeitiger Einwirkung gewisser Angriffsmittel (Ammoniak, Amine, Ammoniumsalze) zur "Spannungsrisskorrosion". Zugspannungen können auch nachträglich durch Einbau bzw. Weiterverarbeitung eingebracht werden.

Durch eine Wärmebehandlung lässt sich eine Spannungsrisskorrosion vermeiden. Bereits Halbzeuge können im entspannten Zustand bezogen werden. Bauteile können einer Entspannungsglühung oder Weichglühung unterzogen werden [7].

9. Anwendungen

- Armaturen, Bördelmuttern, Schrauben, Muttern
- Gesenkschmiedestücke, Stanzteile, Zahnräder, Zahnstangen
- Teile für Sicherheitsschlösser in Kraftfahrzeugen,
- Uhrengehäuse, Uhrwerksplatinen, Federhäuser, Datumsringe
- Ziffern, Zeiger, Zirkelschenkel und -köpfe
- Lüsterklemmen
- Lochbleche (für die Papierindustrie)
- Schilder, Metallbuchstaben, Nietteile

10. Liefernachweis

Nachweise von Herstellern und Händlern für Halbzeug aus CuZn39Pb2 können der Quelle [8] entnommen werden.

11. Literatur

- [1] Copper Data Sheet No. E7, CuZn39Pb2, Deutsches Kupferinstitut, 1970.
- [2] Miyagawa, M., und M. Shinohara, Forgeability of Brass Bar Suitable for Hot Forging in Wide Temperature Range. Jour. Japan Copper and Brass Res. Assn., 10, 1971, 1, S.113-121.
- [3] Hellebrand, L., Verwendung des Warmschlagzerreißversuchs für die Beurteilung der plastischen Eigenschaften der Metalle. Neue Hütte, Vol. 12, 1967, S. 314-315.
- [4] Camenisch, K. P., Das Verhalten von Kupfer und Kupferlegierungen bei hohen und tiefen Temperaturen. Pro Metal Nr. 85, Februar 1962, S. 611-622.
- [5] Anderson, A. R., E.F. Swan und E.W. Palmer, Fatigue Tests on Some Additional Copper Alloys. ASTM Proc., 46, 1946, S. 678-690.
- [6] Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen (DKI-Informationsdruck i.18). Deutsches Kupferinstitut, 1983.
- [7] Messing ja Spannungsrißkorrosion muß nicht sein. Informationsbroschüre, Deutsches Kupferinstitut, 1999.
- [8] http://www.kupferinstitut.de

CuZn39Pb2

12. Index

Literatur 9
Löten 8
MIG-Schweißen 8
Normen
Bänder und Bleche 7
Drähte 7
Schmiedestücke und Schmiedevormaterial 7
Stangen 7
Oberflächenbehandlung 9
Polieren 9
Schweißen 8
Solidustemperatur 2
Spanbarkeit 8
Spez. elektrische Leitfähigkeit 3
Spez. elektrischer Widerstand 3
Spez. magnetische Suszeptibilität 3
Spez. Wärmekapazität 2
Tauchverzinnung 9
Temperaturkoeffizient des elektr. Widerstands 3
Verzinnung 9
Wärmeleitfähigkeit 2
Warmfestigkeit 6
Warmumformung 8
Weichglühen 8
Weichlöten 8
Werkstoffbezeichnungen 8
Widerstandsschweißen 8
WIG-Schweißen 8
Zeitstandwerte 6